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Abstract

An adaptive unstructured grid refinement

technique has been developed and successfully

applied to several three dimensional inviscid

flow test cases. The method is based on a

combination of surface mesh subdivision and

local remeshing of the volume grid. Simple

functions of flow quantities are employed to

detect dominant features of the flowfield. The

method is designed for modular coupling with

various error�feature analyzers and flow

solvers. Several steady-state, inviscid flow

test cases are presented to demonstrate the

applicability of the method for solving

practical three-dimensional problems. In all

cases, accurate solutions featuring complex,

nonlinear flow phenomena such as shock

waves and vortices have been generated

automatically and efficiently.

1 Introduction

Generation of efficient grids for the

computational fluid dynamics (CFD)

applications usually requires some prior

knowledge of the flow behavior in order to

match the grid resolution to the essential

features of the problem. While such

information is usually unavailable in advance,
a number of 'trial-and-error' iterations between

the solution and grid generation are often

required to tailor the grid to the specific nature

of the problem at hand. Alternatively, an

overly fine grid is often generated to guarantee

the desired solution accuracy. In both cases, the

amount of time, effort, and computational

resources may become excessively large for

solving complex problems.

The solution adaptive grid technology is a

powerful tool in CFD, which provides three

important benefits: automation, improved

efficiency, and increased solution accuracy.

Since the distribution of grid points are

efficiently determined by an automatic process,

an adapted grid contains far fewer number of

points than an initial fine grid having similar

local resolution at the crucial regions. This

important feature of grid adaptation results in a

substantial saving in computational time and

memory requirement.

In general, most adaptive methods fall into

three broad categories: grid movement (r-

refinement), grid enrichment (h-refinement), and

local solution enhancement (p-refinement).

While the methods in the first two classes modify

the grid density to improve the solution accuracy

(grid adaptation), those under the third category

enhance the order of numerical approximation at

locations where the solution undergoes abrupt

variations (solution adaptation). Most adaptive

techniques used in the CFD applications fall into
the first two classes.

In the grid movement approach, nodes are

redistributed and moved towards regions where a

higher degree of accuracy is needed. Since the

grid topology remains unchanged throughout the

grid adaptation, the process of grid movement

can be simply incorporated into the solver in a

modular fashion. In addition, no data transfer
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(i.e., interpolation among different grids) is

required since the grid structure remains intact

during the process. Therefore, no solution

accuracy is lost from one adaptation cycle to

the next. The method is especially

advantageous for transient problems involving

moving surfaces and unsteady solutions.

However, since the number of grid nodes

remains constant, transferring nodes from one

part of the grid to another may cause local

'depletion' of grid elements, and thus severe

distortion of the grid may be introduced [1].

Adaptation by grid movement has primarily

been applied to structured grids and 2D

triangular meshes.

In the grid enrichment technique, more

nodes are added to regions where higher

accuracy of the solution is desired. Nodes can
also be removed from locations where the

solution is smooth and requires less grid

resolution. Due to node addition or deletion,

the topology (connectivity) of the grid changes

from one adaptation cycle to another.

Consequently, interpolation of data between

consecutive grids is required which curtails

the applicability of these methods for unsteady

problems. Adaptive methods by grid

enrichment are particularly attractive for their

flexibility, especially when applied in

conjunction with unstructured grids.

Among the adaptive grid methods by

enrichment, two techniques are notable: grid

subdivision and grid remeshing. In grid

subdivision, 'parent' cells are divided into

several smaller cells. The method is efficient

and fast. Once a systematic data structure is

established prior to the adaptation cycles, both

grid refinement and coarsening can easily be

implemented. The grid subdivision methods
have been best demonstrated on Cartesian

meshes [2] and can be implemented in

triangular grids conveniently. However, their

application to tetrahedral grids involves

complex data structures and, in most cases,

results in refinement complications and grid

distortion [3].

Global and partial remeshing have also been

employed for adaptive grid refinement

successfully [4,5]. Two significant advantages

of these methods are 1) flexibility for refinement

and unconstrained coarsening (in subdivision

methods, for example, grids cannot be coarsened

beyond their initial resolutions) and 2) good

quality grids generated in each refinement cycle.

On the other hand, the grid generation time and

the cost of solution interpolation are extensive in

these methods, especially in the global

remeshing.

As there is no single grid type or generation

method (e.g., structured, unstructured, etc.) to fit

all classes of CFD problems, neither is an

individual adaptive methodology which can be

universally applied to a. variety of problems.

Different methods offer certain advantages to

different classes of grids and problems [2,5].

Therefore, it is beneficial to :exploit the

advantages of several techniques in a hybrid

adaptive grid method for solving complex

problems [1]. In the present work, an attempt
has been made to combine the efficiency of h-

refinement and the flexibility of remeshing for

solution adaptive refinement. A grid movement

technique has also been developed (not presented

in this paper) for geometric adaptation of volume

grids to moving or deforming surfaces (see Ref.

6). The focus of this paper is on the refinement

mechanism aspect of the solution adaptive

problem as applied to realistic 3D problems.

2 Approach

The proposed grid adaptation strategy is

summarized in the flowchart shown in Fig. 1. In

this chart, each block represents an independent

module readily exchangeable in the system.

Starting with a reasonably coarse mesh and a

corresponding flow solution, the grid adaptation

process proceeds with an assessment (analysis)
of the current flow solution to determine where
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Figure 1. Flowchart of the proposed grid adaptation
strategy.

in the field the solution needs further

improvement. For a successful adaptation, the

initial coarse grid should be adequately

resolved in order to prevent the adaptive

solution from converging to a 'wrong' solution.

Once the locations requiring solution

improvement are identified, the corresponding

grid elements are flagged for resolution

enhancement. A local remeshing strategy is

then employed to refine the grid at these
locations. A new solution is next obtained on

the modified mesh followed by another

solution assessment. The process continues

until a preset goal such as a desired level of

solution accuracy, the optimization of an

objective function, or simply a certain number

of adaptation cycles is accomplished.

There are two main components in any

grid adaptation technique. First, a strategy is

employed to determine where in the field the

grid (solution) needs modification, e.g., by

means of error estimation, flow feature detection,

or any other type of solution analysis. Secondly,

a mechanism is utilized to either change the grid

density or modify the solution method. The

focus of this paper is mainly on the latter, i.e. a

grid alteration procedure that is automatically

controlled by the flow solution characteristics.

Although it is not the objective of this paper to

elaborate on the former topic, which is the

subject of a separate paper, a brief discussion of

error estimation and flow feature detection is

presented for completeness.

2.1 Error and Flow Feature Detection

In most grid adaptation techniques, the

question of where to modify the grid resolution

or the solution accuracy is_addressed through the

concept of 'error equidistribution '. This principle

states that grid nodes should be clustered in such

a way that the computational errors are uniformly

distributed throughout the .grid. In other words,

the grid should be proportionally denser where

the solution incurs larger error, e.g., where the

flow undergoes rapid changes, and vice versa.

The principle of error equidistribution is strictly
applied in the methods by r-refinement and the

global remeshing techniques to redistribute grid

points in the field optimally. The magnitude of

the computed errors directly determines the grid

spacing parameters in these methods.
In the methods based on h-refinement,

however, error estimation practically serves as a

means to locate the grid elements experiencing

large computational errors [7]. A separate
mechanism modifies the distribution of grid

nodes at these locations without considering the

magnitude of errors. Unlike the r-refinement

which aims for an optimum grid with equal

errors at the nodes, the h-refinement fulfills the

objective of reducing the maximum error through

several preset refinement steps. Theoretically, as

the number of h-refinement cycles increases, the

distribution of errors approaches an equilibrium

state throughout the grid. In practice, however,

only a few cycles of refinement are usually
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performed to adapt the grid. Therefore, the
role of error estimation for h-refinement

reduces to indication of computational errors

induced by the dominant flow features.

Many error (feature) indicators in use are

based on some physical flow quantities such

as density, pressure, entropy, etc. Functions

of the first or second gradients of these

quantities are usually employed to estimate
errors or detect dominant flow characteristics.

For h-refinement, even a crude indicator such

as a simple increment of a flow quantity is

sufficient as long as it correctly detects the

desired flow feature. In this work, the

following simple indicator is employed to

detect expansion and compression waves.

O_ = ( 1 + 8i / 8a) IAp,I / p_ (1)

where pi and Ap_ are the local static pressure

and its increment associated with the i th grid

element, respectively, 8, is the local grid

spacing, and 8a is an average spacing in the

grid. The inclusion of the grid-spacing

correction factor in Eq. 1 results in a better
detection of weak flow discontinuities in

larger grid cells that are away from the

geometry.
Functions based on vorticity or entropy

have been used as indicators for detecting

vortices and adapting grids to vortical flows.

In this work, the following simple measure of

entropy is used to capture vortices.

_; = (TP_/9, v) -1 (2)

where 9, is the local density and _t is the

specific heat ratio. It should be emphasized

that the parameters defined by Equations (1)

and (2) do not represent the magnitude of

computational errors but only indicate the

location of dominant flow features inducing

errors. In practice, the flow feature indicators

measured at each grid element are compared with

some threshold constants prescribed by the user.

If the value of an indicator is greater than the

threshold, the corresponding grid element is

flagged for refinement.

The challenge in the practical implementation

of an adaptive method for solving complex

problems is the choice of appropriate error or

indicating functions. While a particular indicator

may work well for certain class of flow features,

it may not be as effective in recognizing other

flow phenomena. Usually, a prior knowledge of
the flow characteristics is needed in order to

select relevant functions. Since the information

about the flow is generally not available in

advance, an automatic indicator based on a

global objective (e.g., drag reduction) is
desirable. Such a universal indicator should be

able to capture all relevant flow features that

influence the objective function (e.g., shock

waves, vortices, etc.) and should even determine

the flow characteristics that contribute to the

formation of these flow features. In addition, the

indicator must be 'smart' enough to distinguish

between the actual flow variations and the

numerical 'noise' present in the solution.

Otherwise, the grid may be refined in the wrong

locations. The development of an automatic

universal indicator requires comprehensive

research, which is beyond the scope of the

present project and this paper. Further in-depth

study of the subject is planned for future work.

Once such a capability becomes available, it can

be readily incorporated into the present modular

adaptation system.

2.2 Adaptive Local Mesh Refinement

The inherent irregularity of unstructured

grids offers two important benefits: 1) high

degree of flexibility to handle complex shapes

and 2) ease of mesh alteration. The lack of a

regular structure in tetrahedral grids provides

arbitrary cell groupings which, in effect, makes

every part of a grid independent of the rest.

Consequently, any section of a tetrahedral grid
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can be removed and locally remeshed without

disturbing the rest of the grid. Furthermore,

the local resolution of a grid can be arbitrarily

changed when the grid is partially remeshed.

This important property makes unstructured

grids particularly suitable for adaptive local

remeshing.

In this work, an unstructured tetrahedral

grid generation system, VGRIDns [8], is used

to generate initial grids. The grid generation

method is based on the Advancing-Front [9]

and the Advancing-Layers [8] techniques.

Both techniques are based on marching

processes in which tetrahedral cells grow on

an initial front (triangular boundary mesh) and

gradually accumulate in the field around the

subject geometry. The front, made of the

exposed triangular faces of the tetrahedrons,

continuously evolves and marches outward as
new cells are created and added in the

computational domain. The process continues
until the entire domain is filled with

tetrahedral cells when no triangular face

remains in the grid. The grid characteristics,

used during the marching process, are

prescribed through a set of source elements

included in a 'transparent' Cartesian

background-grid [10]. The information is first

distributed smoothly from the sources onto the

background grid nodes by solving a Poisson

equation and then interpolated in the field to

distribute unstructured grid points during the

marching process.

An important feature of the advancing

front technique, like any other marching

method, is that the solution process can be

restarted at any time. Since a grid segment,

once constructed, does not influence the rest

of the mesh yet to be generated, the process

can be stopped and restarted without

"carrying" the grid portion already generated

in the previous run(s). The only data required

to restart the generation process are those

defining the current front. The flexibility of

unstructured grids for local remeshing, along

with the restart feature of the advancing front

method, offers an excellent opportunity for grid

adaptation. An efficient grid restart capability

and a local remeshing technique have previously

been developed and incorporated into the

VGRIDns system for post-processing of the

generated grids [11]. In this work, the existing

capabilities are extended for adaptive grid
refinement.

The process of local grid refinement is

demonstrated on a simple triangular grid in Fig.

2. In this example, a transonic flow field around

a simple airfoil is assumed. An initial coarse

grid (Fig. 2a), along with a corresponding flow

solution, is supplied to the adaptive refinement

scheme. An appropriate flow analyzer, such as

that given by Eq. (1), is used to detect the

dominant flow features. For example, a diffused

shock wave and a large pressure gradient at the

leading edge of the airfoil are assumed in this

case. The grid cells experiencing large variations

in the flow properties, along with additional

layers of cells, are identified for removal (shaded

triangles in Fig. 2b). In the next step, the flagged

elements are deleted to create voids (empty

pockets) in the mesh (Fig. 2c). The remaining

grid points and cells are then renumbered, and

the faces exposed in the pockets are grouped to

form a new front in the grid. If any portion of

the geometry is exposed in the voids, the

corresponding faces on the surface are h-refined,

and the newly inserted nodes are projected onto

the geometry model. The rest of the front faces
in the field remain unrefined to maintain a

contiguous connectivity between the elements of

the new grid segment (being generated in the

pockets) and the original grid. Finally, the grid

density is readjusted in the pockets, and the voids

are remeshed by the Advancing-Front method as

in a regular restart run (Fig. 2d).
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(a)
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Figure 2. Adaptive refinement steps by local remeshing: (a) initial grid, (b) flagged cells in regions of rapid flow

gradients, (c) removal of the flagged cells, and (d) locally refined grid.

The process of local h-refinement is

depicted in Fig. 3 for a portion of a 3D

triangular surface mesh. In this figure, the

shaded surface triangles are assumed covered

with tetrahedral volume grid (Figs. 3a and b).

The unshaded area represents a portion of the

surface mesh exposed in a void after a

segment of the volume grid is removed at the

location of a shock wave (Fig. 3c). To refine

the exposed triangles, new grid points are first

added to the edges of the triangles (Fig. 3d).

Each interior triangle is then divided into four

smaller triangles by connecting the new nodes

(Fig. 3e). The "buffer" triangles (those

adjacent to the unrefined region) are divided

into two or three triangles, depending on their

number of edges on the pocket boundary.

Finally, the void is remeshed and filled with

smaller tetrahedrons (Fig. 3f).

Since the length of each surface mesh edge is

cut in half by the h-refinement, the spacing

parameters defined by the background grid are

also reduced by 50% for regenerating the volume

grid in the voids. Therefore, every time a pocket

is opened for remeshing, the newly generated

grid portion becomes twice as fine as the

surrounding parent grid. The modified grid

spacing provides the required compatibility
between the h-refined surface and locally

remeshed volume grids. To ensure a smooth

variation of grid resolution between the refined

cells and the surrounding parent grid, an average

grid spacing is employed to generate the first

layer of tetrahedral cells on the pocket walls.
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(a) (b)

(d) (e) (f)

Figure 3. Process of local surface mesh subdivision in three-dimension: (a) initial coarse grid, (b) footprint of flow

discontinuity on the surface, (c) exposed triangles after a portion of the volume grid is removed, (d) insertion of new points

on the edges of exposed triangles, (e) subdivision of the exposed triangles, and (f) final adapted grid.

The average spacing is based on the actual

size of the interior front faces (those which are

not h-refined) and the modified background

grid spacing. These "buffer" cells provide a

gradual transition from the coarse to the fine

cells generated in the pockets as shown in Fig.

2d.

3. Results

Adaptive solutions are presented in this

paper for three steady-state, 3D test cases: 1)

an ONERA M6 wing at transonic speed, 2) an

experimental high performance fighter aircraft

at subsonic speed, and 3) an experimental

aerospace vehicle at supersonic speed. Each

of these flow cases represents a distinct

aerodynamic feature suitable for the adaptive

solution. The examples clearly demonstrate

the three benefits that grid adaptation

provides, i.e. accuracy, automation, and

efficiency. All inviscid flow computations,

presented in this paper, were performed using

the upwind, cell-centered, finite-volume,

unstructured grid solver USM3D [12].

3.1 ONERA M6 Wing

An ONERA M6 wing configuration has been

employed to demonstrate the transonic shock

capturing capability of the present solution

adaptive grid method. The flow condition is at a
free stream Mach number of 0.84 and an

incidence of 3.06 degree.

A reasonably coarse grid with a nearly

uniform point distribution chordwise was

generated to serve as the initial grid for

adaptation. The grid, shown in Fig. 4a, contains

2,615 boundary nodes, 15,432 total nodes, and

83,356 tetrahedral cells. An inviscid flow

computation on this grid reveals the presence of
a weak "_." shock wave on the upper surface of

the wing. The surface pressure contours are also

illustrated in Fig. 4a. As expected, the flow is

under-expanded on the upper surface at the

leading edge, and the shock wave is diffused due

to coarseness of the grid.
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Using the surface grid subdivision and

local remeshing procedures described earlier,

three levels of adaptive refinement were

performed for this case. The indicator given

by Eq. (1) was employed to detect regions of

large pressure variation. In each refinement

cycle, cells indicating 20% or larger increment

in the pressure parameters were deleted and

remeshed. The final grid contains 9,739

boundary nodes, 54,385 total nodes, and

288,739 tetrahedrons. Figure 4b shows the

adapted surface grid and the corresponding

pressure contours. As evident, the grid is

I 83,356 cells

288,739 cells

2,217,001 cells

(a)

(c)

Figure 4. ONERA M6 wing surface grids and
pressure contours at M_=0.84 and ct=3.06°: (a)

initial, (b) adapted, and (c) fine unadapted.

efficiently refined at the shock location and the

leading edge of the wing at the so-called "suction

peak" region. The effect of the automatic grid

refinement is clearly reflected on the surface

pressure contours, which show a sharp shock

definition including minute details of the

pressure gradient at the wing tip.

To investigate the effect of partial grid

refinement on accuracy of the adapted solutions,

a globally fine grid with a resolution similar to

that of the adaptively refined grid was generated.

This large grid contains 40,424 boundary nodes,

394,155 total nodes, and 2,217,001 tetrahedrons.

The surface grid and the corresponding pressure

contours are shown in Fig. 4c. A comparison of

this solution with that of the adapted grid

indicates that the differences between the two are

negligible, and that the grid adaptation has

produced an identical result with about an order

of magnitude smaller grid size. Figure 5
illustrates several chordwise distributions of the

surface pressure coefficient (Cp) for the initial

coarse, adapted, and unadapted fine grids as

compared with the experimental data at six

different spanwise stations. As expected, there

are insignificant differences between the adapted

and the fine grid results. From the Cp

distributions, it appears that the result of the

coarse grid is in satisfactory agreement with the

experimental data at the shock locations.

However, it is well known that inviscid solutions

predict stronger shocks further downstream as

indicated by both the fine and adapted grid

curves in Fig. 5. Addition of viscous effects

usually weakens and moves shock waves

upstream to the correct locations. As illustrated

in Fig. 5, the automatic refinement of the grid at

the leading edge has corrected the solution at the

suction peak area. Also, note that both segments

of the )_ shock wave are captured by the adaptive

and the fine grid solutions at the span station

y/b=0.8. Accurate computation of the flow at

this particular station is difficult due to its

proximity to the coalescing shock waves.
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Figure 5. Chordwise distributions of surface pressure

coefficient for ONERA M6 wing at M_=0.84 and

ct=3.06 ° .

As mentioned earlier, a salient feature of

the adaptive grid methods by remeshing is the

quality of the refined grids they produce.

Every time a portion of the grid is removed for

local remeshing, new cells are regenerated in

the pockets without affecting the quality of

grid elsewhere (unlike adaptation by grid

movement.) The accuracy of the presented

adaptive flow solutions and their ease of

generation substantiate the viability and

quality of the adapted grids generated with the

present method. Furthermore, this example

underscores the advantage of grid adaptation

for providing more accurate flow solutions

economically.

The initial grid/solution as well as the adapted

results were all generated using a Silicon

Graphics Octane workstation with a R10000

processor. While the mesh for the fine grid was

also generated on the same workstation, the

corresponding flow computation was performed

on a CRAY C90 supercomputer due to its large

memory requirement. A converged solution on

the fine grid took about 36,548 CPU seconds on
the CRAY C90. A sum of 40,335 CPU seconds

of the SGI workstation was spent to obtain the

initial as well as three levels of adaptive

solutions. For the cases presented in this paper,

all adapted solutions were started from the

freestream condition at each adaptation cycle.

Interpolation of solutions from one grid onto the

next adapted grid (planned for future work)

would expedite the overall solution convergence,

resulting in a substantial saving in the adaptive

solution time.

3.2 Modular Transonic Vortex Interaction

Configuration
To demonstrate the effectiveness of the

present solution adaptive method for predicting

vortical flows, a generic fighter model referred to

as the Modular Transonic Vortex Interaction

(MTVI) has been employed. The configuration

features a chine forebody with an included angle

of 30 degrees, sixty-degree cropped delta wings,

partially deflected wing leading-edge flaps, and

twin vertical tails. All edges of the geometry are

sharp inducing flow separations and vortices,

which are independent of viscous effects.
Inviscid solutions were obtained at a free stream

Mach number of 0.4 and an incidence of 20

degrees.

An initial grid generated for this geometry

contains 31,565 nodes and 163,619 tetrahedrons.

As in the previous case, the grid density is

marginally adequate to resolve the main features

of the flow. No attempt has been made to cluster

grid points at locations where vortices are
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expected. Three levels of adaptation refine the

grid at the critical locations, producing a final

size of 108,014 nodes and 564,727 cells.

Figure 6a illustrates the surface triangulation

for the initial coarse grid (port) and after

adaptation (starboard). Cross-sections of the

initial and adapted volume grids are shown at
a streamwise station ahead of the vertical tails

in Fig. 6b. The automatic refinement of the

surface and volume grids, as adapted to the

chine and wing vortices, is clearly indicated in

these figures.
The accurate flow solution obtained in this

example highlights the benefit of increased

Adapted

(a) Unadapted

automation provided by grid adaptation. The

solution has not only predicted all the details of

the vortical flow structure accurately, it has even
revealed the onset of a vortex breakdown

phenomenon at the proper location

automatically. Figure 7 shows local refinement

of the volume grid (open pockets) at the vortex

locations at two different stages of adaptation. A

refinement of the initial grid, triggered by the

first solution, indicates a chine vortex extending

beyond the aircraft tail (Fig. 7a). The final

refined grid correctly predicts a chine vortex

burst ahead of the vertical tail as indicated in Fig.

7b. The vortex breakdown phenomenon has also

been observed on this geometry experimentally.

Figure 8 depicts a wind tunnel visualization of

the flow at a slightly different condition (or=30 °,

undeflected flaps). Similar formation of the
chine vortex and its burst in front of the vertical

tail is clearly visible in this picture. The

importance of the automation aspect of grid

unburst chine vortex

(a) unadapted

chine vortex breakdown

winR vortex

(b) adapted

Figure 6. Initial and adapted unstructured grids on
the MTVI configuration: (a) surface mesh and (b)

surface/volume grid.

Figure 7. Local refinement of the MTVI volume grid:
(a) initial grid and (b) adapted grid indicating the chine
vortex burst.
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chine vortex

wing vortices

Adapted

Figure 8. Wind tunnel visualization of flow around the

MTVI configuration showing chine vortex burst.

(a)
Unadapted

adaptation for producing accurate solutions is

well demonstrated in this example, as the

initial unadapted grid actually yields a

misleading solution to the problem.

Figure 9a compares surface pressure

distributions before and after grid adaptation

on the port and starboard sides of the aircraft,

respectively. The adapted solution indicates

crisper footprints of the wing vortices and a

chine vortex, which does not extend as far

downstream as that of the unadapted solution

(indicative of the vortex burst phenomenon.)

The pressure distributions in the field,

showing the vortices in a cross-sectional

plane, and on the surface are portrayed in Fig.

9b. As evident, a well-defined vortex

generated by the sharp leading-edge of the

deflected flap and even a smaller vortex

emanating from the wing snag have been

captured with grid adaptation (Fig. 9b,

starboard). Figure 9b also shows a chine

vortex in the field as predicted by the

unadapted solution incorrectly (port). The
absence of the chine vortex in the starboard

side of the image indicates the breakdown

phenomenon captured by the adapted solution
at this location.

To detect vortices, the feature indicator

given by Eq. (2) was employed in this

Figure 9. Initial and adapted static pressure distributions
on the MTVI configuration: (a) surface and (b)
surface/volume.

example. Grid cells experiencing entropy

production levels of higher than a threshold (a

small fraction of the maximum entropy produced

in the field) were flagged for removal at each

adaptation cycle. In the present example, a
threshold value of 0.01 has been used. All the

initial and adaptive computations

(grids/solutions) were performed using the SGI
workstation described earlier.

3.3 X-38 Forebody Configuration

The last test case is presented to emphasize

the efficiency of the adaptive method as

demonstrated on a supersonic flow featuring a
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Figure10. Initial and adapted tetrahedral grids

around the X-38 forebody configuration.

Figure I I. Comparison of the initial and adapted static

pressure contours on the X-38 forebody configuration.

detached shock wave. The configuration

selected for this purpose is the front portion of

an experimental aerospace vehicle referred to
as X-38. The flow condition is at Mach 2 and

a zero incidence angle. This case represents a

classic example for which the generation of an

efficient unadapted grid is challenging due to

the presence of a conical detached shock wave

extending far into the field. Even with a prior

knowledge of the shock location, it is difficult

to control the distribution of grid points at a

curved surface in the 3D space. Usually, the

generated grids are either too coarse away

from the geometry, which fail to capture flow

discontinuities accurately, or globally too fine,

which make the computational cost excessive.

The economic advantage of solution adaptive

gridding becomes more tangible for such

applications.

In Fig. 10, two separate cross-sections of

the field grids are illustrated around the

geometry. The initial grid, shown on the left-

hand side of the figure, contains 87,806 cells.

This grid represents a typical unadapted grid,

which is adequately clustered around the

geometry but is too coarse in the field to

resolve the flow accurately. The grid after

three levels of adaptive refinement (shown on

the right-hand side of the figure) contains

840,135 cells. The adapted grid is efficiently
refined in the field at the 3D conical shock wave

structure as clearly indicated in Fig. 10. Even a
weaker shock wave in front of the canopy is

automatically detected, and the grid is refined

accordingly. Also, note the gradual transition of

the grid spacing from the original coarse grid to
the core of the refined sections where the shock

waves are formed.

An unadapted globally fine mesh, with a

resolution similar to that of the adapted grid at

the shock locations, was also generated for

comparison. The fine grid (not shown) contains

11,786,137 cells, which is a typical grid size for

hypersonic flow computations. The large

difference (more than an order of magnitude)

between the size of the two grids illustrates the

high degree of efficiency offered by grid

adaptation.

The indicator given by Eq. (1) was also used
to detect the detached shock waves in this

example. The effect of the grid-spacing

correction factor in Eq. (1) has resulted in a

better detection of small pressure differences

away from the geometry. Consequently, the

larger cells, which have hardly experienced flow
discontinuities in the initial solution, are also

flagged and refined. Figure ll shows static

pressure contours on the surface and in the field.
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The adapted solution, on the right, exhibits a

sharp bow shock extending farther out to the

outflow boundary. A secondary shock wave

in front of the canopy is also well predicted by

grid adaptation. The unadapted solution,

exhibiting weak compression waves, is shown

on the left-hand side of Fig. 11.

5 Concluding Remarks

A practical adaptive unstructured grid

approach has been developed and tested on
several three-dimensional cases. The method

is based on the proven existing techniques

extended for grid adaptation. The "pilot"

technology has demonstrated potential for

solving complex aerodynamic problems in an

efficient and practical fashion. The presented

sample results have clearly shown that

accurate solutions can be generated

automatically with substantially less amount

of computational time and cost. Additional

work is required to mature the pilot

technology and to extend its capabilities.

Further developments planned for future work

include the implementation of better

error/feature indicators for accurate adaptation

of solutions involving multiple dominant flow

features, solution interpolation between

adaptation cycles, and extension of the method

for the Navier-Stokes solution adaptive

gridding.
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